3.5: Systems: Power laws; 80/20 Principle

“The 80/20 Principle asserts that a minority of causes, inputs, or effort usually lead to a majority of the results, outputs, or rewards.”

—Richard Koch

Main point: General rules/consistencies exist that are common to many systems …

1: Power Laws (80/20 Principle)
- most websites have a few links; a few have a whole lot
- general (counterintuitive) property of networks: vastly different linkages
 o would expect each node to have roughly the same (or gaussian)
 o but just a few have most of the connections – hubs
 ▪ most have few; a few have most
 ▪ highly skewed — far from normal (80/20 distribution)
- also in metabolic networks: just a few molecules participate in most reactions
- also in scientific influence – number of references to a paper
 o original reason for Google algorithm (cf. number of connections to a website)
- original formulation by Pareto: a small percentage of people have most of the wealth
 o order individuals in terms of wealth; top 20% (or so) have 80% of total wealth
 ▪ not always exactly 80/20; could be 80/10, or 90/20
- also true of many other things in life
 o peas in Pareto’s garden; products of companies; hubs; actors; your friends, etc
 o general law of effect in systems
 ▪ general description: power law. Distribution: \(f(a) = a^{-\gamma} \) for some \(\gamma \)
- most of what you do has little return, but a small fraction has enormous impact
 o decisions you make, things you do
 o papers you write (citations – Redner; also, check google scholar)
 o find this part, and focus on it
Why do power-law distributions exist? [“gist”-Barabasi]

- 1: every entity (person, item) the same -> flat (no linkage)
- 2: every cause the same -> gaussian curve (linkage to interior)
- 3: every opportunity the same -> power law (linkage to exterior)
- individual connections to exterior – to *environment*
 o *preferential attachment*: change in \(a = (ka + b) \)
 o exponential curve \(a = 10^\alpha \)
 - exponent \(\alpha \) reflects degree of internal interaction
 o exponent (=linkage) \(\alpha \) varies, with *gaussian distribution*
 o effect on distribution = power law = \(a^\gamma \)
 - exponent \(\gamma \) reflects degree of external interaction

- **Note:** power-law distributions are *scale-free*
 o distribution above is similar to distribution below
 o can’t tell from the distribution what scale you’re at (no characteristic scale)
 - no average, no standard deviation
 - e.g. earthquake size, frequency
Real-World Segment: Interaction with Industry

- Commonly believed that there are two kinds of science:
 - basic science: unimportant in the “real” world
 - applied science: unimportant in the academic world

- the two are connected:
 1. *basic science often gives rise to applications*
 - e.g. computer industry
 2. can also go the other way: *applications can give rise to basic science*
 - e.g., discovery of bacteria by Pasteur motivated by problems in wine industry
 - more generally: *tests done by engineers are a kind of experiment*; can provide interesting data

- standard way of viewing science:
 - basic vs. applied: points along a *single dimension*

- may be better to view this as *two dimensions*:
 - basic: degree to which work affects *theories*
 - applied: degree to which work affects *applications*
 - these dimensions don’t interact
 - can have various combinations—various types of problems

- area of common interest to industry and academia
 - Pasteur’s quadrant